
1

Dynamic Courseware Generation:
at the Cross Point of CAL, ITS and Authoring

Julita Vassileva

Institut für Technische Informatik, Universität der Bundeswehr München
85577 Neubiberg, Germany

E-mail: jiv@informatik.unibw-muenchen.de

Abstract
This paper presents a further development of our architecture for dynamic courseware
generation which allows explicit representation of teaching expertise. The
instructional course is generated automatically for a given teaching goal and can be
dynamically changed according to specified teaching rules to suit better the student's
individual progress and preferences. The architecture of the system is based on
explicit representation of the structure of the domain concepts and relationships (what
has to be taught) and the instructional tasks and methods (how to teach). The separate
representation of the actual teaching materials allows better flexibility and
individualisation, as well as easier updating and re-use of ready CAL materials. In
this way our approach provides an alternative to traditional CAL-authoring. An
implementation of this approach in a simple engineering domain has been done and
an attempt for evaluation of the advantages for authoring is presented.

1 Introduction

Only recently the need of bringing together the fields of CAL and Intelligent Tutoring Systems (ITS)
has been recognised (Larkin & Chabay, 1992) and there have been attempts for "intellectualizing" CAL. One
possible approach is to start from a set of teaching primitives defined at different level of generality to manage
the flow of instruction in a flexible way. Schemes for controlling the dialogue and presentation of teaching
materials have been introduced borrowing from the formalisms for representing natural language dialogues, for
example augmented transition networks, like (Woolf, 1987) and (Murray, 1992) or by taking a task-based
perspective - defining instructional task hierarchies and modeling instruction as planning a sequence of tasks (Van
Marcke, 1991). Several approaches take the other direction - of "de-intellectualizing" ITS - applying ITS-shell
architectures (Elsom-Cook & O'Malley, 1989), (Wentland et. al, 1991), (Brussilovsky, 1992). Our approach for
Dynamic Courseware Generation (DCG) (Vassileva, 1992) falls into this stream. It is based on an ITS-shell
architecture (Vassileva, 1990), whose main idea is global planning of the content of instruction (Peachey &
McCalla, 1986). Based on a separate explicit representation of the concept structure of the domain and a library of
teaching materials, the system dynamically generates instructional courses. The course-plan is created individually
for a given student with a given teaching goal; the plan is substantiated with teaching materials and can be
changed dynamically according to the changing learning needs of the student. The main advantage of this
approach is that it allows automatically building flexible CAL courses which is impossible within the traditional
CAL concept of courseware. Because of the separation between the structure of knowledge from its presentation,
it supports authoring by re-using existing CAL materials. By organising the concept structure so as to
distinguish between different aspects, (e.g. structure and functioning) it is possible to use different discourse
strategies for generating plans with meaningful contents. The partially generic pedagogical knowledge, which is
explicitly represented by means of instructional task hierarchies, like proposed by Van Marcke (1991), and
teaching rules provides for ensuring pedagogical consistency of the automatically generated courses. In this paper
we describe an application of our architecture for dynamic courseware generation to an engineering domain. A

1 Published in Proceedings ICCE’95 -- International Conference on Computers in Education, Singapore, 5-8
December 1995, pp. 290-297

prototype of this application has been developed for teaching with different goals the knowledge about a simple
electrical device.

2 Architecture for Dynamic Courseware Generation

A Dynamic Courseware Generator (DCG) implements a combination of an ITS-shell architecture
(Vassileva, 1990) which dynamically generates a course plan with a given goal and the GTE architecture (Van
Marcke, 1991) which by means of a set instructional task hierarchies and methods decides how to carry out the
plan in an optimal for the student way according to a set of teaching rules. The main feature of the DCG
architecture is the definition of different levels in the domain knowledge representation. It allows separating the
more constant concept-structure from the structure of teaching goals, that depends on the particular teaching
session and student. This separation allows the teacher to define explicitly how she wants a goal-concept to be
taught; what types of links to related concepts to be followed. The architecture of the system is shown in Figure
1. It will be discussed in the next sections.

Student Model

Planner

Executor

Course

Database

Concept
Structure

Teaching
Materials
 (TMs)

Authoring Module

Concept Structure

Editor

 Author

Teacher

Student

Course Generator

Teaching
Authoring

Set of Teaching
 Rules

Instruct. Tasks
 and Methods

Instructional Tasks
and Methods Editor

Knowledge

History

Pers. traits,
preferences

Teaching
 Rules
 Editor

Teaching Materials
 Editor

Pedagogical Component

Figure 1: The DCG architecture

2 . 1 The Data Base

The subject knowledge is contained in the Database Component. It contains two parts:
• The Teaching Materials (TMs) contains presentation- and testing-units that carry out the

communication with the student. They are focused on a given concept or relationship. Different types of TMs can
have different pedagogical characteristics. For example, one can distinguish among an introduction to a concept, a
motivating problem, an explanation, help, exercise, or test. In this sense TMs are equivalent to the "instructional
primitives" in GTE (Van Marcke, 1991). TMs that carry out a dialogue with the student, like exercises and tests,
are represented with a set of smaller units providing a pre-stored correct answer to the exercise/ test, a hint or
help, explanation, eventually intermediate stages of solving the problem etc. The TMs are also classified with
respect to the media they use, i.e. textual, graphical image, animation or video etc.

• The Concept Structure contains the structure of the subject knowledge that is going to be taught.
It is represented as an AND-OR graph with nodes, corresponding to the elements of knowledge (concepts) and
links, corresponding to the possible relationships between them. There can be different semantic relations
between two concepts. For example, aggregation, generalisation, analogy, implication. Every node from the
concept structure has an associated set of TMs with different pedagogical type and media. The Concept Structure
is used for creating a plan of the course-contents (a subgraph of concept structure) to obtain a given teaching
goal. During the course execution TMs are selected by different teaching tasks to teach the concepts of the plan.

2 . 2 The Student Model

The Student Model contains three parts: a model of student knowledge (an probabilistic overlay with the
concepts and relations that have been taught (Diessel et. al., 1993) and (Villano, 1992)), a history (the
instructional tasks / methods and the TMs that have been used) and a model of the student personal traits and
preferences (contains two lists of variables with their values, the first one denoting psychological features like
confidence, motivation, concentration, attention, intelligence, etc. and the other one denoting the preferred types
of media).

3 Pedagogical Component

This component contains two parts each of which has a generic kernel and can be expanded with subject
specific knowledge (tasks, methods and rules).

3 . 1 Instructional Tasks and Methods
This is a part of the Pedagogical Component which contains a representation of instructional tasks and

their decomposition into sub-tasks by means of different instructional methods, like in GTE (Van Marcke, 1991).
The so defined task-structures can be represented with AND-OR graphs similar to the Concept Structure. For
example, figure 2 represents the generic task "Give exercise" (adapted from Van Marcke, 1991). The sub-task
"Remedy" can be decomposed in different ways according to different methods (shown in figure 2 with different
types of lines). The purpose of the instructional task-hierarchies is to allow local planning of the sequence of
TMs focused on one given concept from the plan. The tasks and methods can be generic, but as described in (Van
Marcke, 1991), the deeper the sub-tasks are in the task-decomposition hierarchy, the more subject-dependent they
become. A special editor is provided in the Authoring Module so that the pre-defined set of generic instructional
tasks and methods in the system could be extended with subject-specific ones.

Give Exercise

Make Exercise Verify Remedy

Present Question
exercise solution

 Check Inform
Response Student

Explain

Hint

Elaborate
on sub-
problems

Retry

Give correct solution

Figure 2: An example of a task hierarchy

3 . 2 The Set of Teaching Rules

The teaching rules manage the selection and describe different discourse and teaching strategies, manage
the selection of instructional (task-decomposition) methods and the selection of TMs. They determine the goal of
planning and the plan-selection criteria. Most of the strategy-, method- and task-selection teaching rules are
generic. The rules defining a specific discourse strategy, however, are usually subject-specific. The teaching rules
take into account data from the student model (student's knowledge and personal traits) as well as external factors
like time. Our set of teaching rules has been developed after an analysis of didactic literature (Bohnert, 1995).

• Discourse rules
These rules manage the plan selection at the concept level by establishing criteria, how to select the plan

when several alternatives are possible (for example, according to what type of semantic links to plan, when to
allow switching to follow a different type of link etc.) and how to follow the plan. They also define which

aspects to cover, if the concept structure is organized according to different aspects, and in which way to combine
them. One discourse rule, for example, states that in case that the student is intelligent, top-down following of
the plan is appropriate with respect to the abstraction links (from general to specific), while for not very
intelligent students - bottom-up. If re-planning on the concept level is needed, the discourse rules select whether
it will be local replanning or a global change of the plan. If the concepts about a technical device are organized
according to, say, functional and structural aspects, one discourse rule states that is better for not-knowledgeable
students to use the functional aspect for the main plan allowing jumps to explain concepts from the structure,
while for knowledgeable students it is more appropriate to teach from the structural aspect (Paris, 1993).

• Strategy-selection rules
These rules define how to select the teaching strategy before the execution of the plan starts. The

teaching strategy defines the general principles of teaching, for example, who has the initiative in deciding what
to do next - the student or the system. We distinguish between two main types of teaching strategies:
"structured" and "unstructured". A "structured" strategy means that the initiative is in the hands of the
system: it selects which concept will be taught next and how (i.e. with which instructional task). An
"unstructured" strategy leaves the choice of a next concept to the student. A highlighting of the "ready to be
learned concepts" those whose prerequisites in the plan are considered as known by the student, as in (Beaumont
& Brussilovsky, 1995) can help her navigate in the concept structure. The student can also choose an
instructional task and method for the current concept from the graphical representation of the task hierarchies.
Following the spirit of the general principles for choosing teaching strategies according to different student's
aptitudes (Siegler, 1988), we defined several strategy-selection rules. One for example, is that if the student is
motivated and success-driven, an "unstructured" strategy would be appropriate, while if she is unsure and not
confident, the "structured" strategy should be preferred.

• Method-selection rules
There are usually three to eight alternative task-decomposition methods for each instructional task (Van

Marcke, 1991). The method-selection rules take into account the history of the used instructional tasks and TMs
and the personal traits and preferences from the student model in order to decide what main instructional task(s)
will be selected for the current concept and which task-decomposition method will be chosen. This is done right
before planning at the instructional task-level. The method-selection rules solve the problem in GTE with the
definition of relative applicability conditions of the task decomposition methods, i.e. how to select among
alternative possible methods for a given task. Instead of generating weights in a random way, the use of every
method is recommended according to specific rules which take into account factors describing the situation.

Three alternative methods for teaching a concept can be found in pedagogical literature. The
"hierarchical" method teaches by a sequence of the sub-tasks "introduce", "explain" and "give example", "give
exercises" and finally "give a test". The "advanced organiser" method performs the same task-decomposition
with an additional first sub-task which presents explicitly to the student the current teaching goal and the plan of
sub-tasks which are going to be executed, what is expected from achieving the current goal, i.e. what is the
importance of learning the current concept for the global goal. The "basic concept" method's first sub-task is
to present a problem (exercise) whose solution requires knowledge of the goal concept. In case the student can't
solve the problem, an introduction to the concept is given, an explanation of its main features, an example, the
solution of the initial problem, an exercise, and finally a test.

Following Siegler (1988) we defined a rule asserting that the "basic concept" method has to be preferred
for motivated students, the "advanced organiser" method should be selected for not very concentrated students, the
hierarchical method - for concentrated ones.

For lower-level subtasks the method-selection rules state that an appropriate method should be selected
which decomposes the sub-task further into subtasks involving TMs of a pedagogical type which is preferred by
the student. For example, for the task "clarify concept" we can have three alternative methods: "explain by
description", "explain by example" and "explain by analogy".

Another method-selection rule states that if in the Database contains TMs for the current concept from
all needed types, i.e. if all of the methods can be used for the current goal concept, the student model should be
checked to see whether any of these pedagogical types is in the list of the personal preferences and if so, the
corresponding method is selected.

• Teaching Material Selection Rules
For the current instructional sub-task the teaching rules decide how to select a TM on an appropriate

type of media (i.e. text, graphics, animation or video etc.). They take into account the model of the student's
preferences in order to select among alternative TMs which have the same pedagogical characteristics. They,
however, might give a priority to a certain type of media which is preferred by the Teacher.

3 . 3 Teaching Rules Editor

The Teaching Rules Editor allows the teacher to define her own teaching strategy-, method- and TM-
selection rules. This is done by assigning conditions for the application of the rule (variables from the student
model) and effects (the choice). It is clear that the set of teaching rules has an extremely important role for the
functioning of the DCG. However, the Teaching Rule Editor itself doesn't solve the problem of creating the
rules. How can we get such rules? Three approaches are possible:

• to define them ad-hoc, following some guidelines from existing didactic theories - the current solution.
This is comparatively easy, but the disadvantage is that most didactic theories are very general and don't formulate
precise rules; interpretation is needed in order to arrive at concrete rules guiding action in a specific situation and
this interpretation might be not correct.

• to interview teachers or to ask them to implement the rules directly themselves. This, however,
requires that the teachers are able to articulate the factors influencing their decisions which is not often the case.
This method could also lead to invalid rules, since there is a lot of evidence that people reflect on their decisions
in a different way than they actually take them.

• to analyse protocols of teaching sessions, to identifying cases, generalise them if possible to scripts or
apply machine learning techniques to generate decision trees and rules. This approach would probably give most
reliable results. However, it is difficult to realise, since it requires advanced machine learning tools and a lot of
empirical data.

4 The Course Generator

The Course Generator is the component that creates the course, carries out the interaction with the
student and maintains the Student Model. The Course Generator contains the following components:

 non-
structured

Set of Teaching Rules

Discourse Rules

Strategy Selection
 Rule(s)

Method - Selection
 Rules

TM -Selection Rules

Course Generator Planner

Executor

Select domain, type of link, deepness

Call Planner --> Concept Plan

Select main strategy of course

Select instructional method

Call Planner ---> Task Plan

Select TM

Execute TM

Update Student Model

Other Teaching
 Rules

structured

Select current concept from plan
Select main instructional task for it

Student

Figure 3: Course generation and execution

4 . 1 The Course Planner

The course planner is an AND-OR graph planning program which can be invoked with two purposes:
• to generate a plan of the concepts to be covered by the course to achieve a given teaching goal;
• to plan a task-sequence for teaching the current goal-concept.
The teacher invokes the planner and assigns a teaching goal for the course, a given set of domains to be

covered by the plan, link types with respect to which to plan and maximal depth of traversing the graph. If there
are discourse rules which assign these parameters for a certain teaching goal, the task of the Teacher is only to
assign a teaching goal-concept. The Planner is activated to create a course plan. The planning algorithm is a
modification of the AO* (Nilsson, 1980). The optimisation function h can be selected so as to achieve different
criteria for optimality (i.e. for plan-selection), e.g. the shortest, the plan avoiding certain concept, plan with a
certain topology-type etc.. The selection of h is managed by the discourse rules. The solution graph of an AND-
OR graph (i.e. the course plan) imposes only a partial ordering on the solution steps. The final ordering of sub-
goals is done by certain domain-specific discourse rules or takes place at run time according to the selected
teaching strategy.

4 . 2 The Executor

The Executor consults the discourse Rules and invokes the Planner to create a course plan for achieving
the teaching goal. A main teaching strategy (structured or unstructured) for teaching is selected, by checking the
strategy-selection rules. If an unstructured strategy is selected, the system lets the student choose the current
concept from the plan and an instructional method from the instructional task-hierarchies representation. If a
structured strategy is selected, the executor consults the discourse rules again and chooses the current concept or
link to be taught, then consults the method-selection rules, selects a method and invokes the Planner again to
create a plan of the instructional sub-tasks which are needed to implement the chosen method. Then the TM-
selection rules are consulted to select an appropriate TM (see figure 3).

The selected TM is presented according to the teaching sub-task, then the next sub-task from the task
plan is executed etc., until a testing TM is executed which checks whether the concept is learned, then the Model
of the Student's Knowledge is updated according to the TM's conditional probabilities. With both main strategies,
the unstructured and the structured one, it may happen that the student is not able to acquire some concept within
the time provided for it. A sign for this is the insufficient knowledge probability of the concept in the student
model ("sufficient" is a probability threshold defined by the Author). In this case the executor invokes the Planner
to find a new concept plan, bypassing the difficult concept. Our system provides two principal types of re-
planning, local plan repair and global re-planning (Vassileva, 1995). Local plan repair means that only the part of
the plan related to the current goal will be changed. In this way the system tries to find an alternative way to
teach a difficult concept without changing the overall plan. A global replanning means finding an alternative plan
for the main teaching goal.

5 The Authoring Component

The Authoring Component consists of a TMs-Editor, a Concept Structure Editor and an Editor for
Instructional Tasks and Methods.

The TMs-Editor is a tool that allows "wrapping", i.e. presenting in the way that the system can use
TMs created by any authoring tool for producing multimedia materials. Ready made CAL materials, courses,
videos and graphics can be reused. A unique name is given to every TM and it is associated with one concept or
link from the Concept Structure. In order to be included in the Database, it is needed to classify the TM according
to its pedagogical type and media and to assign a time allotment for it.

TMs which interact with the student have to be included in the database as a set of "particles": this is a
list of pointers resp. to the "body" of the TM (the question, problem etc.), to the correct answer, to a hint, to an
explanation, a decomposition of the solution into steps. All these are individually accessible by the instructional
sub-tasks. If not all above-mentioned "particles" are present, the corresponding TMs can still be used with the
main task, however, some of the task-decomposition methods will not be applicable. At least one test-atom
should be created for every node and link, so that the system can judge from the student's success or failure on it
whether she knows the associated concept. To provide means for the system to evaluate the degree of knowledge
of each of the concepts involved in a given test-atom, the Author has to define the likelihood vectors, i.e. two
vectors containing the conditional probabilities of the student's knowledge each of the involved concepts, if she
answers correctly and if she answers incorrectly to the given test-atom. Even though there is no guarantee that the
probabilities given are adequate, our experience shows that it is not hard for the Author to give approximate
estimations of the probabilities.

The Concept Structure Editor is a graphical editor which allows developing, extending and
modifying the concept structure. It supports creating, deleting and switching between domains; for a selected
domain it allows to insert, delete and move, name and re-name nodes on the screen; to insert, delete and connect
links; to represent the different semantics of the links with different colours; to view the existing teaching
materials in the data-base and to associate them with the nodes and links from the concept structure. This editor
provides the possibility to assign conditional probabilities as a special type of links between the concepts,
independent of the links denoting inter-concept relations. They have a weight which shows how the knowledge
probabilities of the concepts will be internally propagated.

The Editor for Instructional Tasks and Methods is similar to the Concept Structure Editor. It
allows creating, deleting, modifying of instructional task-structures. Alternative task-decomposition methods are
represented by linking the task-nodes with arcs which have different colours, thickness and pattern. Every leaf-
node (not decomposable) sub-task is provided with a list of the appropriate pedagogical types of TMs which can
be presented. The majority of task hierarchies and decomposition methods are generic and defined in advance. The
editor allows the author to define subject-specific instructional tasks.

6 Implementation

The platform chosen for the implementation is IBM PC 486 in a MS-Windows environment. The
system is implemented in C++ and OpenScript. ToolBook © Asymetrix is used as an authoring tool for creating
the TMs. It allows a very easy creation of TMs with advanced graphics and animation and permits linking
photos, and sound- records. At this stage a prototype of the system has been implemented and tested for teaching
about electric toasters. Even for such a simple device the concept structure is quite complicated. It was structured
according to three aspects — structure, geometry and functions. In the functions-aspect 12 functions (nodes) are
connected with time-relations of 3 types: "before", "after" and "in parallel". In the structure-aspect
there are 18 nodes organized in a hierarchy connected with links of the type "is a part of". There are 5
cross-domain links between the structure- and functional-domains.

The main part of time (one week) an Author spent for "paper and pencil" development of the concept
structure. Editing the instructional task-structures took one afternoon and the concept structure - two days. More
time - three days - was spent in editing TMs with ToolBook. Having the Data Base ready, the time for
generating a course-plan when a Teacher assigns a teaching goal is less than two minutes. The Teacher found
reasonable 14 different teaching goals divided in 3 groups: initial acquaintance, montage, maintenance, diagnosis
and repair. The length of the generated plans (in terms of nodes and links to be presented) varied in wide interval,
depending on the position of the teaching goal in the concept structure and the initial knowledge of the student.
The time-duration of a course varied between 10 and 30 minutes, depending on the length of the plan and the
duration of the selected tasks with the selected TMs.

In order to evaluate the effort spent for creating an hour of instruction, the time spent for authoring has
to be divided by the sum of the durations of all possible courses that can be generated by the system (with all
possible teaching goals). If we take 8 hours as an average duration of a working day, 6 hours - for one afternoon
and 20 minutes as an average duration of a course, we obtain an approximate ratio of 86 hours of authoring for 5
hours of instruction. This is a favourable result in comparison with other authoring approaches for ITS, since the
average time of design and authoring for one hour of intelligent instruction is considered 100 hours. If the Data
base allows the generation of many courses with many different goals, the extra-efforts for design and editing the
concept structure, and updating and propagation probabilities etc. will be justified. We believe that authoring
with our system is far more effective than authoring in the traditional sense. However, we will be able to claim
that the system is more effective only after experimenting in a more complicated technical domain. Now we are
encoding the Database for a telephone switching device.

7 Conclusions

Dynamic Courseware Generation provides an alternative to the traditional approach for authoring in
CAL. Its main advantages are:

• flexibility in the goals of courses. By means of a multi-aspect organization of the subject
concepts and the possibility to define and use different types of semantic links among them the system
can decide how to plan a course for any given goal in an optimal way according to various discourse
rules.
• individualisation of instruction. Teaching of complex technical systems requires to take into
account that the students have different backgrounds, education, level of knowledge, motivation,

intelligence, confidence, independence. By continuous monitoring of the student's behavior and
maintaining a simple student model of her knowledge, personal traits and preferences, the DCG is able
to find alternative course-plans, teaching methods, and TMs which are dynamically tailored to the
student's benefit.
• possibility to assign and change the teaching strategies of the system. A human teacher
must have a clear metaphor of the mechanism of the system's functioning. She can think of the system
as an agent teaching according to a plan like a curriculum by performing instructional tasks according to
specific methods. This agent can be "instructed" by means of adding teaching rules in which cases to
select which plans, methods and TMs.
• possibility for easy authoring, re-use of already developed courseware and of using technical
documentation as a basis for developing Teaching Materials. This is obtained by separation of the
concept structure from the actual TMs which allows them to be updated and extended directly without
changing the structure of the domain.

The course-authoring is shared between the Author (designer of the data-base for a particular domain) and
the Teacher. That makes teachers actively involved in the creation of a course without too much efforts and
special knowledge of authoring and helps in the overall acceptance of the system. The actual authoring process is
shifted to a higher level: to represent explicitly the structure of the concepts and teaching tasks. This is a non-
trivial task. However, we believe this is a justified effort in order to obtain a system able to teach in a variety of
ways for a variety of goals.

References

Bohnert, A. (1995) Analyse und Entwicklung pädagogischer Lehrstrategien für ein intelligentes tutorielles
System, Magisterarbeit, Philosophischen Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn.

Brussilovsky, P. (1992) A Framework for Intelligent Knowledge Sequencing and Task Sequencing, Proceedings
ITS'92, Lecture Notes in Computer Science No. No 608, Springer: Berlin-Heidelberg, 499-506.

Beaumont, I. & Brussilovsky, P. (1995) Adaptive Educational Multimedia: from Ideas to Real Systems,
Proceedings of ED-MEDIA'95, Graz, AACE.

Diessel Th., Lehmann A., Vassileva J. (1994) Individualized Course Generation: A Marriage Between CAL and
ICAL. Computers Educ., Vol. 22, No.1/2, 57-64.

Elsom-Cook, M. & O'Malley, C. (1989) Bridging the gap between CAL and ITS. CITE Report 67, I.E.T., The
Open University, Great Britain, 1989.

Larkin J. & Chabay R.(eds.) (1992) Computer Assisted Instruction and Intelligent Tutoring Systems: Shared
Goals and Complementary Approaches, Introduction chapter, Lawrence Erlbaum Assoc: Hillsdale, NJ, 1-10.

Murray, T. (1992) Tools for Teacher Participation in ITS Design, Proceedings ITS'92, Lecture Notes in
Computer Science No 608, Springer: Berlin-Heidelberg, 593-600.

Nilsson, N. (1980) Principles of Artificial Intelligence, Morgan Kaufmann Publ., Los Altos, CA.
Paris C., (1993) User Modeling in Text Generation, Pinter Publishers: London.
Peachey D., McCalla, G. (1986) Using Planning Techniques in Intelligent Tutoring Systems, Int. J. Man-

Machine Stud., 24, 77-98.
Siegler, R. (1988) How Content Knowledge, Strategies and Individual Differences Interact to Produce Strategy

Choices, in Schneider & Weinert (eds.) Interaction among Aptitudes, Strategies and Knowledge in Cognitive
Performance. Springer: New York, 74-88.

Van Marcke, K. (1991) A Generic Task Model for Instruction, in Proceedings of NATO Advanced Research
Workshop on Instructional Design Models for Computer Based Learning Environments, Twente.

Vassileva J. (1990) An Architecture and Methodology for Creating a Domain-Independent Plan-based Intelligent
Tutoring System, Educational & Training Technologies International, 27,4, 386-397.

Vassileva J. (1992) Dynamic Courseware Generation within an ITS-shell Architecture. Proc. ICCAL'92, Lecture
Notes in Computer Science No 602, Springer: Berlin-Heidelberg, 581-591.

Vassileva J. (1995) Reactive Instructional Planning To Support Interacting Teaching Strategies, Proceedings of
AI-ED 95, World Conference on AI and Education, Washington, AACE.

Villano M. (1992) Probabilistic Student Models: a Bayesian Belief Networks and Knowledge Space Theory,
Proceedings of ITS-92, Lecture Notes in Computer Sciences No 608, Springer: Berlin-Heidelberg, 491-498.

Wentland, M., Ingold R., Vaniorbeek C., Forte E. (1991) HIPOCAMPE: Towards Learner-Sensitive, Content-
Optimized Interactive CAI, Proceedings CALISCE'91, Lausanne, EFPL, 233- 240.

Woolf, B. (1987) Theoretical Frontiers in Building a Machine Tutor, in G. Kearsley (ed.) Artificial Intelligence
and Instruction: Applications and Methods, Addison-Wesley: Reading, 229-267.

Acknowledgements: This work has been partially supported by Project I-408 with the Bulgarian Ministry
of Science and Higher Education.

